
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS         Vol. 7, No. 1-2, January - February 2013, p. 154 - 156 

 

A robust chaos synchronization method under parameter 

mismatch 
 

LIDONG LIU
*
, HUANSHENG SONG, XINGLE FENG, JINFENG HU

a
, GUOFENG WANG

b
 

School of Information Engineering, Chang’an University, Xi’an, 710064, China  
a
School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China. 

b
China Highway engineering consulting corporation, Beijing, 100097, China  

 

 

 
This paper proposes a new method of chaos synchronization for chaotic system under parameter mismatch. Based on 
Lyapunov stability theory, the proposed synchronization method is robust to parameter mismatch. The slave system can 
synchronize to the master system even the parameter error is large. This can overcome the parameter mismatch problem 
when using the circuit components to realize the synchronization. Finally, numerical simulations are given to demonstrate 
the effectiveness of the proposed method. 
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1. Introduction 

 

Chaos synchronization which was first introduced by 

Pecora and Carroll [1], has attracted much attention in 

recent years, especially its applications to electronics [2], 

optical communication [3-6], and radar [7-11]. However, 

the conventional synchronization method is easily 

influenced by parameter mismatch, since no two coupled 

systems can be identical in reality due to the errors of 

circuit components (usually nearly 5% error or more) or 

the other artificial factors. Therefore, it is desirable to 

design an alternative synchronization method that can 

overcome parameter mismatch synchronization problem 

of the conventional method. 

Parameter mismatch synchronization problem has 

been researched by many researchers [12-15]. In [12], an 

adaptive control method online estimation method is 

proposed for adaptive synchronization of two uncertain 

chaotic systems.  It is an effectiveness synchronization 

method. However, in this method, all the parameters are 

changed by the same proportion factor. This is a special 

condition for electronic engineering. In [13], a method of 

parameter mismatch on anticipating synchronization of 

chaotic systems with time delay in the framework of the 

master-slave configuration is proposed. In [14,15], a 

synchronization method of coupled chaotic systems with 

time delay in the presence of parameter mismatches by 

using intermittent linear state feedback control is proposed. 

In the methods of [13-15], the parameters are not changed 

just by the same proportion factor. They (the parameters) 

are changed randomly, and this is common in practical 

engineering. However, the parameter error in [13-15] 

maller than 5%.   

In this paper, we propose a parameter robust 

synchronization method, which can make the slave system 

synchronize to the master system under parameter  

mismatch. In the proposed method, the parameters are 

changed randomly, and the synchronization still can be 

realized even the parameter error is large. The new 

synchronization method in this paper is based on 

Lyapunov stability theory and the design procedure is 

demonstrated by the well known Lorenz chaotic system. 

Though we focus on the Lorenz chaotic system in this 

paper, the analysis and the thought still can be extended to 

other chaotic systems.  

This paper is organized as follows. In section 2, a new 

synchronization method which is robust to parameter 

mismatch is proposed. In section 3, simulations on the 

Lorenz system is given to illustrate the effect of the 

proposed method. Brief conclusion of this paper is drawn 

in section 4. 

 

2. Synchronization method under parameter  

  mismatch  

 

The chaotic signal generated from the typical Lorenz 

system can be expressed as: 
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where mx , my , mz are the state variables. s , r and b are 

the parameters. We assume that the system (1) freely 

“moves” about, so it is called the master system. The 

parameter mismatch synchronization problem is to design 

a controller, such that the trajectories of the slave system 

(2) asymptotically follow those of the master system even 

the parameter is not identical with the master system. In 

this paper, the slave system is designed as 
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where s , r , b are the errors of the parameters. The 

synchronization aim is desired that  
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The main aim is to design the suitable control 

component  1 2 3, ,u u uu . In this paper, the control 

component is given by Eq.(4).  
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where 1 2, 3,k k k and 1 2, 3,a a a  are the constants which need 

to be designed. Hence, next we will show how to design 

1 2, 3,k k k and 1 2, 3,a a a  to make the slave system 

synchronize to the master system. First we define the 

synchronization error as 
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So that differentiates from Eq.(5), we define 
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Choosing the Lyapunov function  
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and let  
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In order to make the slave system synchronize to the 

master system, 0L  should be satisfied based on 

Lyapunov stability theory. This is equal to make Q be 

positive matrix. The reason is 0  . If the parameters 

( , , )s r b is given and the error bound of the parameters are 

given, we can find the suitable 1 2 3( , , )k k k  to make the 

two systems synchronize. 

 

3. Simulations and analysis 

 

In order to illustrate the effect of the proposed 

parameter robust synchronization method, in this section, 

we do simulations on the Lorenz chaotic system. For 

comparing the performance of the traditional chaotic 

synchronization method in [14] is also given. 

The simulations are operated as follows. Let the 

master system is defined by Eq.(1), the slave system by 

using the proposed method in this paper is defined by 

Eq.(2). 

Let 16, 45.6, 4.s r b   The parameter error is given 

as 4, 7, 2s r b      (the parameter error is 25%, 
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15.35%,50% respectively). The initial condition for the 

master system is given by (2, 3, 7) and that of the slave 

system is given by (10, 14, 12). By using the 

Eq.(12)
1 2 320, 28, 49B B B   is got and 

1 2 346, 65, 14k k k      is got by utilizing the Matlab 

linear matrix inequality (LMI) control Toolbox [16]. The 

synchronization performance is given by Fig. 1. For 

comparing, we also use the conventional synchronization 

method as [14] under the same condition. The 

synchronization performance is given by Fig. 2.  

We can see from Fig. 1 and Fig. 2, the proposed 

synchronization method is more robust to parameter 

mismatch and the synchronization error is smaller than 

that of the method in [14].  In the proposed method, after 

0.37s, the slave system can almost synchronize to the 

master system when the parameters are mismatched. 
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Fig. 1. The Synchronization error of the method in this 

paper versus time. 
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Fig. 2. The Synchronization error of the method in [14] 

versus time. 

 

 

 

 

4. Conclusion 

 

A method of parameter robust synchron -ization is 

proposed in this paper. We have investigated the 

properties of synchronization between master–slave 

chaotic systems under parameter mismatch. We find that 

the slave system can nearly synchronize to the master 

system after a short time even the parameter error is more 

than 20%. This can overcome the parameter mismatch 

problem when using the circuit components to realize the 

synchronization since in reality the parameter error in 

circuit components can not be avoided.  
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